ligand in cis-Pt(NH₃)(cyclobutylamine)Cl₂ (toxicity ~ 10 mg kg⁻¹) has also been observed (Rochon & Melanson, 1986). The crystal structure of cis-Pt-(cpa)₂Cl₂ could provide further information, but so far it has not been possible to obtain the compound in a suitable crystalline form.

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada and to the Ministère de l'Education (FCAR) for financial support. We also wish to thank M. Simard for his assistance in the structure determination of (I).

References

- AUTHIER-MARTIN, M. & BEAUCHAMP, A. L. (1977). Can. J. Chem. 55, 1213–1217.
- BRADDOCK, P. D., CONNORS, T. A., JONES, M., KHOKHAR, A. R., MELZACK, D. H. & TOBE, M. L. (1975). Chem. Biol. Interactions, 11, 145-161.
- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A 26, 71–83. CROMER, D. T. (1965). Acta Cryst. 18, 17–23.

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A26, 321-323.

- HOWARD-LOCK, H. E., LOCK, C. J. L., TURNER, G. & ZVAGULIS, M. (1981). Can. J. Chem. 59, 2737-2745.
- LOCK, C. J. L., SPERANZINI, R. A. & ZVAGULIS, M. (1980). Acta Cryst. B36, 1789-1793.
- LOCK, C. J. L. & ZVAGULIS, M. (1981). Inorg. Chem. 20, 1817-1823.
- MALLIKARJUNAN, M., CHACKO, K. K. & ZAND, R. (1972). J. Cryst. Mol. Struct. 2, 53-66.
- MELANSON, R. & ROCHON, F. D. (1975). Can. J. Chem. 53, 2371–2374.
- Rochon, F. D. & Kong, P. C. (1986). Can. J. Chem. 64, 1894–1896.
- ROCHON, F. D. & MELANSON, R. (1986). Acta Cryst. C42, 1291-1294.
- ROCHON, F. D., MELANSON, R. & DOYON, M. (1987). *Inorg. Chem.* 26, 3065–3068.
- SARMA, R., RAMIREZ, F., NARAYANAN, P., MCKEEVER, B., OKAZAKI, H. & MARECEK, J. F. (1978). J. Am. Chem. Soc. 100, 4453-4457.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, A Practical Guide, p. 303. London: Macmillan.
- WINTER, H. J., HECHT, H. J. & BRADACZEK, H. (1981). Acta Cryst. B37, 2183-2185.

Acta Cryst. (1989). C45, 856-859

Structure of a Rh^I Complex of a Bis(2,3-quinolino)-annulated cis,syn,cis-Tricyclo[6.3.0.0^{3,7}]undecane*

BY WILLIAM H. WATSON[†] AND ANTE NAGL[‡]

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA

AND ALAN P. MARCHAND[†] AND PENDRI ANNAPURNA

Department of Chemistry, University of North Texas, PO Box 5068 Denton, Texas 76203, USA

(Received 14 July 1988; accepted 24 November 1988)

Abstract. [Rh(cod)(bqtu)]BF₄ (2), $C_{33}H_{32}N_2Rh.BF_4$, $M_r = 646.35$, orthorhombic, *Pcmn*, a = 8.793 (2), b = 14.957 (2), c = 20.665 (3) Å, V = 2717.7 (6) Å³, Z = 4, $D_x = 1.580$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 6.59$ cm⁻¹, *F*(000) = 1320, T = 294 K, R = 0.0546 for 1829 reflections. The structure contains mononuclear ions with square-planar geometry about the Rh¹ atom. The Rh¹ atom is coordinated to the two double bonds of the 1,5-cyclooctadiene (cod) ligand and to two N atoms from the new bqtu ligand, (1). The two

* 1UPAC name of ligand bqtu: 5b,5c,12a,13,13a,14-hexahydro-12H-cyclopenta[1'',2'':4,5;4'',3'':4',5']dicyclopenta[1,2-b:1',2'b']diquinoline.

‡ On leave from the Faculty of Technology, University of Zagreb, Zagreb, Yugoslavia.

0108-2701/89/060856-04\$03.00

midpoints of the double bonds and the two N atoms form the square-planar geometry. The axial sites are shielded by H atoms from the two ligands. The heptacyclic bqtu ligand has *cis*-fusion to the central five-membered ring leading to a folded conformation resulting in a cleft between π -electron systems with a *syn*-orientation of N atoms. The angle between these two systems is 87.0 (8)°.

Introduction. Our research groups are interested in fused-ring systems which exhibit significant strain energies, strong intramolecular interactions, enhanced or unusual reactivities or unusual geometric shapes (Marchand, 1988; Watson, 1982; Vögtle, Müller & Watson, 1984). Recently, the heptacyclic ligand (1), a bis(2,3-quinolino) derivative of *cis,syn,cis*-tricyclo-

© 1989 International Union of Crystallography

[†] Authors to whom correspondence should be addressed.

[6.3.0.0^{3,7}]undecane, was prepared as indicated in the scheme (Marchand & Annapurna, 1988) and the crystal structure was determined (Marchand, Annapurna, Flippen-Anderson, Gilardi & George, 1988). Many potentially binucleating ligands such as 1,8naphthyridine (Tiripicchio, Camellini, Uson, Oro, Ciriano & Viguri, 1984), 7-azaindole (Oro, Ciriano, Villarroya, Tiripicchio & Lahoz, 1984) and pyrazole and its derivatives (Uson, Oro, Ciriano, Carmona, Tiripicchio & Camellini, 1982) form complexes in which the ligand bridges binuclear Rh₂ units. In the case of amidinato complexes of Rh¹ with cod (1,5-cyclooctadiene), tfbb (tetrafluorobenzo[5,6]bicyclo[2.2.2]octa-2,5,7-triene) and nbd (norbornadiene) both mononuclear and binuclear Rh¹ complexes can be prepared depending upon the nature of the two ligands and upon the resulting steric interactions (Lahoz, Tiripicchio, Camellini, Oro & Pinillos, 1985). In some cases monomer-dimer equilibria have been observed by NMR techniques (Knoth, 1973). In order to investigate the complexing properties of ligand (1) and the geometry and steric character, we have prepared the mononuclear Rh¹ species (2) with cod and the tetrafluoroborate anion (see scheme).

Experimental. Reaction of an ethanol solution of (1) with an ethanol solution of rhodium(cod)chloride dimer at ambient temperature followed by addition of $AgBF_4$ (Yamamoto, Watanabe, Chikamatsu, Okamoto & Yoshida, 1987) afforded the Rh¹ complex (2) as a pale orange microcrystalline solid, m.p. 513–518 K. Recrystallization from ethanol yielded a sample suitable for X-ray investigations.

A yellow-orange crystal $0.10 \times 0.25 \times 0.25$ mm; Nicolet $R3m/\mu$ update of a $P2_1$ diffractometer; data collected in the ω -scan mode ($3 \le 2\theta \le 50^\circ$), scan rate 4 to 29.3° min ', graphite-monochromated Mo Ku radiation; lattice parameters from a least-squares refinement of 25 reflections $(30.39 \le 2\theta \le 36.91^{\circ});$ systematic absences (hk0, h+k = 2n+1; 0kl, l = 2n+1) and Laue symmetry *mmm* consistent with space group Pcmn; monitored reflections (0,0,10 and 361) showed only statistical variations in intensities; 2505 unique reflections measured ($0 \le h \le 10, 0 \le k \le 17, 0 \le l \le$ 24), $1829 \ge 3\sigma(I)$; Lorentz-polarization corrections applied, w-scan empirical absorption correction (transmission factors 0.873 to 0.951), structure solved by direct methods, block-cascade least-squares refinement. H atoms located in a difference map but atoms allowed to ride at fixed distances from attached C atoms with an isotropic thermal parameter refined for each of the organic moieties; final R = 0.0546, wR = 0.0336 for 196 parameters and 1829 reflections (R = 0.0829) and wR = 0.0375 for all 2505 reflections), S = 1.415, $(\Delta/\sigma)_{max} = 0.008$; largest peaks in the final difference map of +0.63 and -0.70 eÅ⁻³ located near the Rh atom; $\sum w(|F_o| - |F_c|)^2$ minimized with $w = 1/\sigma^2(F_o)$; isotropic extinction correction $F = F_c/[1 + 0.002xF_c^2/\sin(2\theta)]^{0.25}$ applied with x refined to 0.00008 (2). All computer programs supplied by Nicolet for Desktop 30 Microeclipse and Nova 4/C configuration (Nicolet Instrument Corporation, 1986); atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974). Table 1 lists atomic positional parameters and U_{eq} values while Table 2 lists interatomic distances and valence angles. Fig. 1 is a drawing of the title compound.*

Discussion. The Rh¹ complex contains isolated mononuclear ions having crystallographic C_{c} symmetry. The Rh¹ atom, the two N atoms and the midpoints (MP) of the two double bonds form an approximate squareplanar array (r.m.s.d. = 0.03 Å) with two Rh¹-N distances of 2.084 (4) Å and two Rh–MP distances of 2.033 (6) Å. The N-Rh-N, N-Rh-MP and MP-Rh-MP angles are 81.9(2), 95.3(2) and $87.1(2)^{\circ}$. respectively and the N····N separation is 2.734 (6) Å which may be compared with the values of 3.19 and 3.54 Å observed for two independent molecules of the uncomplexed ligand (1) (Marchand, Annapurna, Flippen-Anderson, Gilardi & George, 1988). The axial sites of the Rh^1 ion are shielded effectively by H(10). H(13), H(15), H(16) and the mirror-related H atoms. The Rh-N, Rh-MP and Rh-C distances [2.150 (6) and $2 \cdot 145$ (5) Å are consistent with the values reported

^{*} Lists of H-atom coordinates, anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51638 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table	1. Atomic coordinates $(\times 10^4)$ and equivalent					
isotropic thermal parameters $(Å^2 \times 10^3)$						

Table 2. Bond lengths (Å) and angles (°)

A refers to atoms related by the mirror plane.

	x	у	z	U_{eq}^{\bullet}
Rh	1404 (1)	2500	1141 (1)	28 (1)
C(1)	-1350(11)	2500	-1096 (4)	52 (3)
C(2)	-374 (7)	3305 (4)	-931 (2)	45 (2)
C(3)	-1314 (7)	4145 (3)	-778 (2)	47 (2)
C(4)	-1481 (7)	4136 (3)	-53 (3)	39 (2)
C(5)	-2386 (7)	4627 (4)	347 (3)	44 (2)
C(6)	-2279 (6)	4505 (3)	1016 (3)	40 (2)
C(7)	-3243 (7)	4948 (4)	1463 (3)	59 (2)
C(8)	-3146 (7)	4782 (4)	2098 (3)	62 (3)
C(9)	-2095 (7)	4183 (4)	2344 (3)	55 (2)
C(10)	-1117 (6)	3741 (4)	1934 (3)	45 (2)
C(11)	-1196 (6)	3889 (3)	1265 (2)	36 (2)
N	-249 (5)	3414 (3)	849 (2)	30 (1)
C(12)	-450 (6)	3525 (3)	214 (2)	30 (2)
C(13)	432 (6)	3036 (3)	-291 (2)	34 (2)
C(14)	4581 (8)	2992 (4)	744 (3)	79 (3)
C(15)	3229 (6)	3434 (4)	1012 (3)	45 (2)
C(16)	2804 (7)	3438 (4)	1657 (3)	48 (2)
C(17)	3677 (9)	2996 (4)	2183 (3)	89 (3)
B	507 (15)	2500	3748 (6)	59 (5)
F(1)	-12 (7)	3203 (3)	4062 (3)	154 (3)
F(2)	2017 (7)	2500	3719 (4)	147 (4)
F(3)	-40(10)	2500	3179 (3)	228 (7)

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

Fig. 1. Drawing of compound (2) with thermal ellipsoids drawn at the 25% probability level. H atoms represented by spheres of arbitrary size.

for similar complexes (Tiripicchio, Camellini, Uson, Oro, Ciriano & Viguri, 1984; Oro, Ciriano, Villarroya, Tiripicchio & Lahoz, 1984; Lahoz, Tiripicchio, Camellini, Oro & Pinillos, 1985).

The central five-membered ring of ligand (1) is in an envelope conformation with the C(1) flap pointed away from the H-atom side. The other five-membered rings are in flattened envelope conformations and are cis-fused to the central ring. The mean planes through the central and adjacent five-membered rings make an angle of $53.4(8)^\circ$, and the *cis*-fusion of the two outside five-membered rings results in a folded conformation with a molecular cleft between the π -electron systems.

Rh–N	2.084 (4)	Rh-C(15)	2.145 (5)
RhC(16)	2.150 (6)	Rh - N(A)	2.084(4)
Rh - C(154)	2.145(5)	Rh-C(16A)	2.150(6)
C(1) - C(2)	1.518 (8)	C(1) - C(2A)	1.518 (8)
C(2) - C(3)	1.537 (8)	C(2) - C(13)	1.553 (7)
C(3) - C(4)	1,506 (7)	C(4) = C(5)	1.363 (8)
C(4) - C(12)	1.400 (7)	C(5) - C(6)	1.398 (8)
C(6) - C(7)	1.417 (8)	C(6) - C(11)	1.422 (7)
C(7) - C(8)	1.339(10)	C(8) - C(9)	1.384 (9)
C(9) - C(10)	1.375 (8)	C(10) - C(11)	1.403(7)
C(11) - N	1.391 (6)	N - C(12)	1.333 (6)
C(12) - C(13)	1.491 (7)	C(13) - C(13A)	1.605 (9)
C(14) - C(15)	1.468 (9)	C(14) - C(144)	1.473(12)
C(15) - C(16)	1.386 (8)	C(16) - C(17)	1.486 (9)
C(17) - C(17A)	1.483(13)	B = F(1)	1.318 (9)
B - F(2)	1.329(15)	B = F(3)	1.270(14)
B = F(1A)	1.318 (9)	D I (5)	1.210 (14)
2 (()	. 510 (5)		
N-Rh-C(15)	93.4 (2)	N-Rh-C(16)	96.6 (2)
C(15) - Rh - C(16)	37.6 (2)	N - Rh - N(A)	81.9(2)
C(15) - Rh - N(A)	155.9 (2)	C(16) - Rh - N(A)	$166 \cdot 1 (2)$
C(16) - Rh - C(154)	93.4 (2)	C(15) - Rh - C(154)	81.3 (3)
C(16) - Rh - C(16A)	81.5 (3)	C(2)-C(1)-C(2A)	105.0 (7)
C(15A) - Rh - C(16A)	() $37.6(2)$	C(1)-C(2)-C(13)	$104 \cdot 1(5)$
C(1)-C(2)-C(3)	113.0 (5)	C(2)-C(3)-C(4)	104.4(4)
C(3)-C(2)-C(13)	106.4 (4)	C(3)-C(4)-C(12)	109.7 (5)
C(3) - C(4) - C(5)	130.9 (5)	C(4) - C(5) - C(6)	119.3 (5)
C(5)-C(4)-C(12)	119.4 (5)	C(5) - C(6) - C(11)	119.2 (5)
C(5)-C(6)-C(7)	122.9 (5)	C(6) - C(7) - C(8)	120.9 (6)
C(7)-C(6)-C(11)	117.9 (5)	C(8) - C(9) - C(10)	120.2 (6)
C(7) - C(8) - C(9)	121.5 (6)	C(6) - C(11) - C(10)	119.4 (5)
C(9) - C(10) - C(11)	120.0 (5)	C(10) - C(11) - N	119.9 (4)
C(6)-C(11)-N	120.6 (4)	Rh - N - C(12)	117.3(3)
Rh-N-C(11)	125.0 (3)	C(4) - C(12) - N	123.7(4)
C(11) - N - C(12)	117.6 (4)	N-C(12)-C(13)	123.9 (4)
C(4) - C(12) - C(13)	112.3 (4)	C(2) - C(13) - C(13)	105.0(3)
C(2) - C(13) - C(12)	103.4 (4)	C(15)-C(14)-C(14)	(4) 116.8 (3)
C(12) - C(13) - C(13)	A) $119.4(3)$	Rh - C(15) - C(16)	71.4 (3)
Rh - C(15) - C(14)	111.0 (4)	Rh-C(16)-C(15)	71.0 (3)
C(14)-C(15)-C(16	125.7(5)	C(15)-C(16)-C(17	$124 \cdot 3(5)$
Rh-C(16)-C(17)	111.6 (4)	F(1)-B-F(2)	111.6 (7)
C(16)-C(17)-C(17	A) $116.4(3)$	F(2) - B - F(3)	109.7 (10)
F(1) - B - F(3)	109.0 (7)	F(2) - B - F(1A)	111.6 (7)
F(1)-B-F(1A)	105.9 (10)		

The two N atoms are in a syn-orientation. The angle between the two planar halves forming the cleft is 87.0 (8)°. The pyridyl and phenyl rings are each planar (0.015 and 0.004 Å r.m.s.d., respectively) and the pyridyl ring makes an angle of $5.4(8)^{\circ}$ with the adjacent five-membered ring and $3.7(8)^{\circ}$ with the phenyl ring.

The bite angle N-Rh-N of ligand (1) in the complex is $81.9(2)^{\circ}$ with the lone pairs pointing almost directly toward the Rh¹ ion $|C(5)-N-Rh = 175 \cdot 1 (2)^{\circ}|$. Unlike the naphthyridine ring in which the lone pairs have a parallel relationship and pyrazole in which the lone pairs point away from each other, the ligand (1) is probably best suited for chelating a single ion rather than bridging. Binuclear bridges would also encounter considerable steric congestion with the cod ligands. Replacement by CO should remove these steric constraints and test the binuclear complexing ability of ligand (1).

The cyclooctadiene ring exhibits a tub conformation with the four-atom segments being planar and exhibiting an interplanar angle of 56.9 (6)°.

Financial support for this work was provided by the Welch Foundation (Grants P-074 to WHW, B-963 to APM), the Air Force Office of Scientific Research (Grant AFOSR-88-0132) and the Faculty Research Committees of Texas Christian University and the University of North Texas.

References

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KNOTH, W. H. (1973). Inorg. Chem. 12, 38-44.
- LAHOZ, F. J., TIRIPICCHIO, A., CAMELLINI, M. T., ORO, L. A. & PINILLOS, M. T. (1985). J. Chem. Soc. Dalton Trans. pp. 1487–1493.
- MARCHAND, A. P. (1988). Advances in Theoretically Interesting Molecules, Vol. 1, edited by R. P. THUMMEL. Greenwich, CT: JAI Press.

- MARCHAND, A. P. & ANNAPURNA, P. (1988). Abstr. 16th Int. Symp. Chemistry of Natural Products, IUPAC 88, Kyoto, Japan, 29 May-3 June, 1988. Paper No. PC 9.
- MARCHAND, A. P., ANNAPURNA, P., FLIPPEN-ANDERSON, J. L., GILARDI, R. & GEORGE, C. (1988). Private communication.
- Nicolet Instrument Corporation (1986). SHELXTL for Desktop 30 (Microeclipse). Report PN269-1040340, April. Nicolet Instrument Corp., WI, USA.
- ORO, L. A., CIRIANO, M. A., VILLARROYA, B. E., TIRIPICCHIO, A. & LAHOZ, F. J. (1984). J. Chem. Soc. Chem. Commun. pp. 521-522.
- TIRIPICCHIO, A., CAMELLINI, M. T., USON, R., ORO, L. A., CIRIANO, M. A. & VIGURI, F. (1984). J. Chem. Soc. Dalton Trans. pp. 125-131.
- USON, R., ORO, L. A., CIRIANO, M. A., CARMONA, D., TIRIPICCHIO, A. & CAMELLINI, M. T. (1982). J. Organomet. Chem. 224, 69-80.
- Vögtle, F., Müller, W. M. & Watson, W. H. (1984). Top. Curr. Chem. 125, 131–164.
- WATSON, W. H. (1982). Editor. Stereochemistry and Reactivity of Systems Containing Pi-Electrons. Deerfield Beach, FL: Verlag Chemie International.
- YAMAMOTO, K., WATANABE, K., CHIKAMATSU, H., OKAMOTO, Y. & YOSHIDA, T. (1987). J. Chem. Soc. Chem. Commun. pp. 807-809.

Acta Cryst. (1989). C45, 859-861

Bis(méthanesulfonate) de Tétraammine-trans-dichloroplatine(IV) Monohydrate

PAR L. BALDE, P. KHODADAD ET N. RODIER

Laboratoire de Chimie Minérale, Faculté des Sciences Pharmaceutiques et Biologiques, 5 Rue J.-B. Clément, 92296 Châtenay-Malabry CEDEX, France

(Reçu le 18 novembre 1988, accepté le 8 décembre 1988)

Abstract. $[PtCl_2(NH_3)_4].2CH_3SO_3.H_2O, M_r = 542.3, monoclinic, C2/m, a = 19.406 (2), b = 7.482 (1), c = 12.456 (2) Å, <math>\beta = 122.84 (1)^\circ$, $V = 1519.5 (9) Å^3$, Z = 4, $D_x = 2.37 \text{ Mg m}^3$, $\lambda(Mo K\alpha) = 0.7107 Å, \mu = 9.98 \text{ mm}^{-1}$, F(000) = 1040, T = 294 (1) K, R = 0.020 for 1389 independent reflections. The structure consists of CH₃SO₃ anions, $[PtCl_2(NH_3)_4]^{2+}$ cations and water molecules. Each independent Pt atom is at a centre of symmetry and has an octahedral environment. All molecular parameters are similar to those obtained for other related compounds. Numerous $O-H\cdots O, N-H\cdots O$ and $N-H\cdots Cl$ hydrogen bonds take part in the cohesion of the structure.

Introduction. Le bis(méthanesulfonate) de tétraamminetrans-dichloroplatine(IV) monohydrate a été préparé à la température ambiante, en ajoutant un excès de peroxyde d'hydrogène et d'acide chlorhydrique, pris l'un et l'autre en solutions concentrées, à un mélange de bis(méthanesulfonate) de tétraammineplatine(II) et d'acide méthanesulfonique en solution aqueuse.

0108-2701/89/060859-03\$03.00

L'évaporation lente de cette solution a donné un résidu incolore dans lequel a été prélevé le cristal soumis à l'analyse structurale. Celle-ci a été entreprise dans le cadre de l'étude des dérivés formés par le platine avec l'ammoniac et les polyamines aliphatiques. Elle a eu pour objectif de déterminer la nature des entités chimiques qui constituent le produit étudié.

Partie expérimentale. Cristal parallélépipédique: 0,10 × 0,22 × 0,40 mm. Diffractomètre Enraf-Nonius CAD-4. Dimensions de la maille déterminées avec 25 réflexions telles que $6,59 \le \theta \le 15,13^{\circ}$. 0,039 $\le (\sin\theta)/\lambda \le 0,650 \text{ Å}^{-1}$; $-25 \le h \le 20$, $0 \le k \le 9$, $0 \le l \le 16$. Balayage $\theta/2\theta$ d'amplitude $s(^{\circ}) = 0,80 + 0,35tg\theta$. Réflexions de contrôle des intensitiés: 114, 604 et 736. 1883 réflexions indépendantes mesurées, 494 réflexions inobservées $|I < 2\sigma(I)|$. $\sigma(I)/I$ moyen (contrôle) = 0,0030. Corrections d'absorption (Walker & Stuart, 1983). Valeurs maximale et minimale du coefficient de correction: 1,251 et 0,853. Méthode de l'atome lourd; H non localisés avec certitude. Affinement basé sur les

© 1989 International Union of Crystallography